Spectrally non-overlapping background noise disturbs echolocation via acoustic masking in the CF-FM bat, Hipposideros pratti

Author:

Zou Jianwen1,Jin Baoling1,Ao Yuqin1,Han Yuqing1,Huang Baohua1,Jia Yuyang1,Yang Lijian2,Jia Ya2,Chen Qicai1,Fu Ziying1

Affiliation:

1. Central China Normal University Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, , No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China

2. Central China Normal University College of Physical Science and Technology, , No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China

Abstract

Abstract The environment noise may disturb animal behavior and echolocation via three potential mechanisms: acoustic masking, reduced attention and noise avoidance. Compared with the mechanisms of reduced attention and noise avoidance, acoustic masking is thought to occur only when the signal and background noise overlap spectrally and temporally. In this study, we investigated the effects of spectrally non-overlapping noise on echolocation pulses and electrophysiological responses of a constant frequency–frequency modulation (CF-FM) bat, Hipposideros pratti. We found that H. pratti called at higher intensities while keeping the CFs of their echolocation pulses consistent. Electrophysiological tests indicated that the noise could decrease auditory sensitivity and sharp intensity tuning, suggesting that spectrally non-overlapping noise imparts an acoustic masking effect. Because anthropogenic noises are usually concentrated at low frequencies and are spectrally non-overlapping with the bat’s echolocation pulses, our results provide further evidence of negative consequences of anthropogenic noise. On this basis, we sound a warning against noise in the foraging habitats of echolocating bats.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3