Age-growth relationships, temperature sensitivity and palaeoclimate-archive potential of the threatened Altiplano cactusEchinopsis atacamensis

Author:

English N B1,Dettman D L23,Hua Q4,Mendoza J M5,Muir D6,Hultine K R7,Williams D G8

Affiliation:

1. School of Health, Medical and Applied Science, Central Queensland University, 538 Flinders St West, Townsville, QLD 4810, Australia

2. Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA

3. Estuary Research Center, Shimane University, Matsue, 690-8504, Japan

4. Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia

5. Herbario del Oriente Boliviano (USZ), Museo de Historia Natural Noel Kempff Mercado, Av. Irala 565, Casilla 2489, Santa Cruz, Bolivia

6. Murdoch University, Perth, WA 6009, Australia

7. Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA

8. Department of Botany, University of Wyoming, Laramie, WY 82071, USA

Abstract

AbstractThe tall (>4 m), charismatic and threatened columnar cacti, pasacana [Echinopsis atacamensis (Vaupel) Friedrich & G.D. Rowley)], grows on the Bolivian Altiplano and provides environmental and economic value to these extremely cold, arid and high-elevation (~4000 m) ecosystems. Yet very little is known about their growth rates, ages, demography and climate sensitivity. Using radiocarbon in spine dating time series, we quantitatively estimate the growth rate (5.8 and 8.3 cm yr−1) and age of these cacti (up to 430 years). These data and our field measurements yield a survivorship curve that suggests precipitation on the Altiplano is important for this species’ recruitment. Our results also reveal a relationship between night-time temperatures on the Altiplano and the variation in oxygen isotope values in spines (δ18O). The annual δ18O minimums from 58 years of in-series spine tissue from pasacana on the Altiplano provides at least decadal proxy records of temperature (r = 0.58; P < 0.0001), and evidence suggests that there are longer records connecting modern Altiplano temperatures to sea-surface temperatures (SSTs) in the Atlantic Ocean. While the role of Atlantic SSTs on the South American Summer Monsoon (SASM) and precipitation on the Bolivian Altiplano is well described, the impact of SSTs on Altiplano temperatures is disputed. Understanding the modern impact of SSTs on temperature on the Altiplano is important to both understand the impact of future climate change on pasacana cactus and to understand past climate changes on the Altiplano. This is the best quantitative evidence to date of one of the oldest known cactus in the world, although there are likely many older cacti on the Altiplano, or elsewhere, that have not yet been sampled. Together with growth, isotope and age data, this information should lead to better management and conservation outcomes for this threatened species and the Altiplano ecosystem.

Funder

National Science Foundation

Australian Institute of Nuclear Science and Engineering

National Geographic Society Committee for Research and Exploration

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3