Hatchery and wild larval lake sturgeon experience effects of captivity on stress reactivity, behavior and predation risk

Author:

Wassink Lydia1,Huerta Belinda2,Larson Doug2,Li Weiming2,Scribner Kim12

Affiliation:

1. Michigan State University Department of Integrative Biology, , 288 Farm Lane, East Lansing MI 48824, USA

2. Michigan State University Department of Fisheries and Wildlife, , 480 Wilson Road, East Lansing MI 48824, USA

Abstract

Abstract Reintroduction programs are important tools for wildlife conservation. However, captive rearing environments may lead to maladaptive behavior and physiological alterations that reduce survival probability after release. For captive rearing programs that raise individuals captured from the wild during early ontogeny for later release, there is a lack of information about when during ontogeny the detrimental effects of captive rearing may become evident. In this study we compared cortisol levels, predation rates and swimming behavior between hatchery-produced and wild-caught larval lake sturgeon (Acipenser fulvescens), a threatened fish species, at three times over 9 days. Cortisol levels did not indicate that hatchery-produced individuals were more stressed, but cortisol reactivity to an acute stressor disappeared for both hatchery-produced and wild-caught larvae after 9 days in the hatchery. Swimming activity levels decreased over time for hatchery-produced larvae but increased over time for wild-caught larvae, suggesting that behavioral trajectories may be programmed prior to the larval stage. Neither increasing nor decreasing activity levels was advantageous for survival, as predation rates increased over time in captivity for larvae from both treatments. Results suggest that physiological and behavioral phenotypes may not accurately predict survival for individuals released from reintroduction programs and that the captive environment may inhibit transition to the wild even if cortisol levels do not indicate high stress. Findings emphasize that even a short amount of time in captivity during early ontogeny can affect phenotypes of individuals captured from wild populations, which may impact the success of reintroduction programs.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3