Murine models of clonal haematopoiesis to assess mechanisms of cardiovascular disease

Author:

Wang Ying12,Sano Soichi13,Ogawa Hayato1ORCID,Horitani Keita1,Evans Megan A1,Yura Yoshimitsu1,Miura-Yura Emiri1ORCID,Doviak Heather1,Walsh Kenneth1ORCID

Affiliation:

1. Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA

2. Department of Cardiology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Chongqing 400037, P.R. China

3. Department of Cardiology, Osaka City University Graduate School of Medicine, -4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

Abstract

Abstract Clonal haematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to haematopoietic stem and progenitor cells (HSPCs) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leucocytes leading to a situation whereby a substantial fraction of an individual’s blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a haematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated ‘driver’ genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.

Funder

National Institutes of Health

American Heart Association

Japan Heart Foundation

Chongqing Innovation Support Program for Returned Overseas Scholars

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3