Innate and adaptive immunity: the understudied driving force of heart valve disease

Author:

Bartoli-Leonard Francesca1ORCID,Zimmer Jonas1ORCID,Aikawa Elena123ORCID

Affiliation:

1. Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

2. Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

3. Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia

Abstract

Abstract Calcific aortic valve disease (CAVD), and its clinical manifestation that is calcific aortic valve stenosis, is the leading cause for valve disease within the developed world, with no current pharmacological treatment available to delay or halt its progression. Characterized by progressive fibrotic remodelling and subsequent pathogenic mineralization of the valve leaflets, valve disease affects 2.5% of the western population, thus highlighting the need for urgent intervention. Whilst the pathobiology of valve disease is complex, involving genetic factors, lipid infiltration, and oxidative damage, the immune system is now being accepted to play a crucial role in pathogenesis and disease continuation. No longer considered a passive degenerative disease, CAVD is understood to be an active inflammatory process, involving a multitude of pro-inflammatory mechanisms, with both the adaptive and the innate immune system underpinning these complex mechanisms. Within the valve, 15% of cells evolve from haemopoietic origin, and this number greatly expands following inflammation, as macrophages, T lymphocytes, B lymphocytes, and innate immune cells infiltrate the valve, promoting further inflammation. Whether chronic immune infiltration or pathogenic clonal expansion of immune cells within the valve or a combination of the two is responsible for disease progression, it is clear that greater understanding of the immune systems role in valve disease is required to inform future treatment strategies for control of CAVD development.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3