Affiliation:
1. Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
Abstract
Synopsis
Seasonal rhythms in reproduction are conserved across nature and optimize the timing of breeding to environmental conditions favorable for offspring and parent survival. The primary predictive cue for timing seasonal breeding is photoperiod. Supplementary cues, such as food availability, social signals, and temperature, fine-tune the timing of reproduction. Male and female animals show differences in the sensory detection, neural integration, and physiological responses to the same supplementary cue. The neuroendocrine regulation of sex-specific integration of predictive and supplementary cues is not well characterized. Recent findings indicate that epigenetic modifications underlie the organization of sex differences in the brain. It has also become apparent that deoxyribonucleic acid methylation and chromatin modifications play an important role in the regulation and timing of seasonal rhythms. This article will highlight evidence for sex-specific responses to supplementary cues using data collected from birds and mammals. We will then emphasize that supplementary cues are integrated in a sex-dependent manner due to the neuroendocrine differences established and maintained by the organizational and activational effects of reproductive sex hormones. We will then discuss how epigenetic processes involved in reproduction provide a novel link between early-life organizational effects in the brain and sex differences in the response to supplementary cues.
Funder
Company of Biologists (Scientific Meeting
Society for Experimental Biology
Leverhulme Trust
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献