Affiliation:
1. Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba Ward, Sendai, Miyagi 980-8577, Japan
Abstract
Abstract
Snakes have no limbs and can move in various environments using a simple elongated limbless body structure obtained through a long-term evolutionary process. Specifically, snakes have various locomotion patterns, which they change in response to conditions encountered. For example, on an unstructured terrain, snakes actively utilize the terrain’s irregularities and move effectively by actively pushing their bodies against the “scaffolds” that they encounter. In a narrow aisle, snakes exhibit concertina locomotion, in which the tail part of the body is pulled forward with the head part anchored, and this is followed by the extension of the head part with the tail part anchored. Furthermore, snakes often exhibit three-dimensional (3-D) locomotion patterns wherein the points of ground contact change in a spatiotemporal manner, such as sidewinding and sinus-lifting locomotion. This ability is achieved possibly by a decentralized control mechanism, which is still mostly unknown. In this study, we address this aspect by employing a synthetic approach to understand locomotion mechanisms by developing mathematical models and robots. We propose a Tegotae-based decentralized control mechanism and use a 2-D snake-like robot to demonstrate that it can exhibit scaffold-based and concertina locomotion. Moreover, we extend the proposed mechanism to 3D and use a 3-D snake-like robot to demonstrate that it can exhibit sidewinding and sinus-lifting locomotion. We believe that our findings will form a basis for developing snake-like robots applicable to search-and-rescue operations as well as understanding the essential decentralized control mechanism underlying animal locomotion.
Funder
Japan Science and Technology Agency
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献