Larval transport is fundamental to several ecological processes, yet it remains unresolved for the majority of systems. We define larval transport, and describe its components, namely, larval behavior and the physical transport mechanisms accounting for advection, diffusion, and their variability. We then discuss other relevant processes in larval transport, including swimming proficiency, larval duration, accumulation in propagating features, episodic larval transport, and patchiness and spatial variability in larval abundance. We address challenges and recent approaches associated with understanding larval transport, including autonomous sampling, imaging, -omics, and the exponential growth in the use of poorly tested numerical simulation models to examine larval transport and population connectivity. Thus, we discuss the promises and pitfalls of numerical modeling, concluding with recommendations on moving forward, including a need for more process-oriented understanding of the mechanisms of larval transport and the use of emergent technologies.