Molecular-Backscatter Lidar Profiling of the Volume-Scattering Coefficient in Cirrus

Author:

Ansmann Albert

Abstract

Backscatter and polarization lidars have already been used extensively to investigate ice clouds (see chapters 2 and 10). A severe limitation is that trustworthy values of the volume-scattering coefficient, one of the most important parameters in the description of the impact of cirrus on climate, cannot be derived from data taken with these lidars. Even the retrieved cirrus backscatter-coefficient profile is often questionable. A discussion of achievements and limitations of the lidar method can be found in the literature (e.g., Fernald et al. 1972; Klett 1981; Fernald 1984; Klett 1985; Sasano et al. 1985; Bissonnette 1986; Ansmann et al. 1992b; Kovalev 1995). The procedure, with all its subsequent modifications and improvements, suffers from the fact that two physical quantities, the particle backscatter coefficient and the particle extinction coefficient, must be determined from only one lidar signal. The uncertainties in the estimated optical parameters are especially large in cirrus, in which the relationship between particle extinction and backscattering can vary strongly in space and time. The situation improved significantly when the first molecular (Raman)-backscatter lidar experiments demonstrated that accurate extinction profiling throughout the entire troposphere is possible (Ansmann et al. 1990, 1992b). After the Pinatubo eruption, it was shown that even at stratospheric heights profiles of the volume-scattering coefficient can easily be obtained with a Raman lidar (Ansmann et al. 1991, 1993a, 1997; Ferrare et al. 1992; Gross et al. 1995; Donavan und Carswell 1997). Two types of molecular-backscatter lidars for extinction measurements are available. The Raman lidar measures lidar return signals elastically backscattered by air molecules and particles and inelastically (Raman) backscattered by nitrogen and/or oxygen molecules (Cooney et al. 1969; Melfi 1972; Ansmann et al. 1992a; Whiteman et al. 1992; Reichardt et al. 1996). Interference-filter polychromators and double-grating monochromators (Arshinov et al. 1983; Wandinger et al. 1998) are used to separate the aerosol signal from the vibrational-rotational or pure rotational Raman signals, to reduce the sky background radiation, and, for the Raman channels, to block the strong elastic-backscatter radiation at the laser wavelength. The suppression has to be better than 10-8. The second type of a molecular-backscatter lidar is the High Spectral Resolution Lidar (HSRL).

Publisher

Oxford University Press

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3