The onset in spring and the end in autumn of the thermal and vegetative growing season affect calving time and reproductive success in reindeer

Author:

Paoli Amélie1,Weladji Robert B1,Holand Øystein2,Kumpula Jouko3

Affiliation:

1. Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada

2. Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, PO Box 5003, Norway

3. Natural Resources Institute of Finland (Luke), Reindeer Research Station, 99910, Finland

Abstract

Abstract A developing trophic mismatch between the peak of energy demands by reproducing animals and the peak of forage availability has caused many species’ reproductive success to decrease. The match–mismatch hypothesis (MMH) is an appealing concept that can be used to assess such fitness consequences. However, concerns have been raised on applying the MMH on capital breeders such as reindeer because the reliance on maternal capita rather than dietary income may mitigate negative effects of changing phenologies. Using a long-term dataset of reindeer calving dates recorded since 1970 in a semidomesticated reindeer population in Finnish Lapland and proxies of plant phenology; we tested the main hypothesis that the time lag between calving date and the plant phenology in autumn when females store nutrient reserves to finance reproduction would lead to consequences on reproductive success, as the time lag with spring conditions would. As predicted, the reproductive success of females of the Kutuharju reindeer population was affected by both the onset of spring green-up and vegetative senescence in autumn as calves were born heavier and with a higher first-summer survival when the onset of the vegetation growth was earlier and the end of the thermal growing season the previous year was earlier as well. Our results demonstrated that longer plant growing seasons might be detrimental to reindeer’s reproductive success if a later end is accompanied by a reduced abundance of mushrooms.

Funder

Natural Sciences and Engineering Research Council of Canada

NSERC

Reindeer Husbandry in a Globalizing North

ReiGN

Nordforsk-funded “Nordic Centre of Excellence”

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3