Maternal undernutrition during periconceptional period affects whole-genome ovine muscle methylation in adult offspring

Author:

Capra Emanuele1ORCID,Toschi Paola2,Del Corvo Marcello3,Lazzari Barbara1,Stella Alessandra1,Williams John Lewis143,Loi Pasqualino5,Ajmone Marsan Paolo13

Affiliation:

1. Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR) , Lodi 26900 , Italy

2. Department of Veterinary Sciences, University of Turin , Grugliasco 10095, TO , Italy

3. Department of Animal Science, Food and Technology – DIANA, and Nutrigenomics and Proteomics Research Center – PRONUTRIGEN, Università Cattolica del Sacro Cuore , Piacenza 29122 , Italy

4. Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy, SA 5371 , Australia

5. Laboratory of Experimental Embryology, Faculty of Veterinary Medicine, University of Teramo , Teramo 64100 , Italy

Abstract

Abstract Experimental and epidemiological studies suggest that maternal nutritional status during early pregnancy, including the period around the time of conception, may induce long-lasting epigenetic changes in the offspring. However, this remains largely unexplored in livestock. Therefore, the objective of this study was to evaluate if modification of the maternal diet of sheep (CTR: control; UND: 50% undernutrition) during the periconceptional period (42 d in total: −14/+28 from mating), would impact CpG methylation in muscle tissue (Longissimus dorsi) of adult offspring (11.5 mo old). Reduced representation bisulfite sequencing identified 262 (Edge-R, FDR < 0.05) and 686 (logistic regression, FDR < 0.001) differentially methylated regions (DMRs) between the UND and CTR groups. Gene ontology analysis identified genes related to development, functions of the muscular system, and steroid hormone receptor activity within the DMRs. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the muscle of the resulting offspring, with possible implications for cardiac dysfunction, muscle physiology, and meat production.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3