Low-energy scanning transmission electron microscopy applied to ice-embedded biological macromolecules

Author:

Adaniya Hidehito1ORCID,Cheung Martin1,Yamashita Masao1ORCID,Taba Seita1,Cassidy Cathal1,Shintake Tsumoru1

Affiliation:

1. Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University , 1919-Tancha, Onna-son, Okinawa 904-0495, Japan

Abstract

Abstract In this report, we applied annular bright-field and annular dark-field low-energy (30 keV) scanning transmission electron microscopy imaging to a vitreous ice-embedded biological macromolecule, T4 phage, to investigate the applicability of these methods for morphological investigation and sample screening. Multiple camera lengths were examined to find the optimal acceptance angle for both modes. Image clarity differed substantially between the modes, with the presence of ice also strongly influencing the quality of acquired micrographs. In annular dark-field mode, the proper discrimination of electrons scattered by the specimen from those scattered by the background ice was found to be difficult due to the severe overlap of the scattered electrons. The resulting micrographs lacked clarity, and the ice-embedded phage particles could only be discerned after post-processing image adjustment. However, in annular bright-field mode, despite similar overlapping of the scattered electrons, it was possible to assess the morphology and intactness of the specimen in the embedding ice, suggesting that this mode may find utility in low-energy cryo-scanning transmission electron microscopy imaging methods.

Funder

Okinawa Institute of Science and Technology Graduate University.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3