Phylogenomic Analysis of 155 Helminth Species Reveals Widespread Absence of Oxygen Metabolic Capacity

Author:

Collington Emma1,Lobb Briallen1,Mazen Nooran Abu1,Doxey Andrew C1,Glerum D Moira12ORCID

Affiliation:

1. Department of Biology, University of Waterloo, 200 University Ave W. , Waterloo, ON , Canada

2. Waterloo Institute for Nanotechnology, University of Waterloo,   Waterloo, ON , Canada

Abstract

Abstract The terminal electron acceptor of most aerobic respiratory chains, cytochrome c oxidase (COX), has been highly conserved throughout evolution, from aerobic prokaryotes to complex eukaryotes. Oxygen metabolism in parasitic helminths differs significantly from that of most aerobic eukaryotes, as these organisms can switch between aerobic and anaerobic metabolisms throughout their life cycles. Early studies suggested a lack of COX activity in certain parasitic helminths, and the role of COX in helminth mitochondria remains unclear. To determine whether a functional COX is widely present in helminths, we analyzed the phylogenetic distribution of oxygen metabolism systems across 155 helminth genomes, investigating three distinct sets of protein-coding genes involved in different aspects of oxygen metabolism: COX and its assembly factors, peroxisomes, and the most abundant reactive oxygen species (ROS)-metabolizing proteins. While glycolytic and citric acid cycle enzymes are highly conserved in helminthic species, we observed an apparent widespread absence of essential COX genes across 52% of helminth species investigated. While the most common proteins involved in the defense against ROS are highly maintained across virtually all lineages, we also observed an apparent absence of essential peroxisomal protein-coding genes in 42% of species investigated. Our results suggest that a subset of parasitic helminths utilize oxygen differently from related, nonparasitic species such as Caenorhabditis elegans, with significant differences in their mitochondrial electron transport chains and peroxisomes. The identification of substantive differences between parasite and host metabolism offers a new avenue for the development of anthelmintic agents that could target these divergent pathways.

Funder

Natural Sciences and Engineering Canada through Discovery

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3