Affiliation:
1. Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
Abstract
Abstract
Cypermethrin, one kind of pyrethroid pesticides, has been shown to act as endocrine-disrupting chemicals (EDCs). The purpose of this study was to explore the roles of Sertoli cell apoptosis through mitochondrial pathway associated with calcium (Ca2+) in cypermethrin-induced male reproductive toxicology. The mouse Sertoli cells TM4 were cultured with 0 μM, 10 μM, 20 μM, 40 μM and 80 μM of cypermethrin. We used flow cytometry, Fluo-4 AM, western blot and JC-1 Assay Kit to examine apoptosis, intracellular Ca2+, expressions of mitochondrial apoptotic pathway-related proteins and mitochondrial membrane potential. We found cypermethrin increased apoptosis rate of TM4 cells significantly and with a significant increase in intracellular Ca2+ concentration. Cypermethrin significantly decreased the protein expressions of cytosolic B-cell lymphoma-2 (Bcl-2) and mitochondrial cytochrome c (Cyt-c). The protein expressions of cytosolic Bcl-2-associated x (Bax), Cyt-c, cleaved caspase-3, calmodulin (CaM), Ca2+/CaM-dependent protein kinases II (CaMKII) and phosphorylated CaMKII were increased significantly in cypermethrin-exposed TM4 cells. Cypermethrin decreased mitochondrial membrane potential significantly. Then, Bcl-2 family and Ca2+/CaM/CaMKII pathway participate in cypermethrin-induced homeostasis. Ca2+ overload activates mitochondrial pathway by increasing permeability of mitochondrial membrane and decreasing mitochondrial membrane potential. We suggest cypermethrin induces Sertoli cell apoptosis involving mitochondrial pathway associated with Ca2+ regulated by Bcl-2 family and Ca2+/CaM/CaMKII pathway. The study provides a new insight into mechanisms involved in cypermethrin-induced male reproductive toxicology.
Funder
Medical University of Silesia
Natural Science Research of Jiangsu Higher Education Institutions of China
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献