Physical, chemical, and toxicological characterization of fibrillated forms of cellulose using an in vitro gastrointestinal digestion and co-culture model

Author:

Pradhan Sahar H1,Mulenos Marina R1,Steele London R1,Gibb Matthew2,Ede James D3,Ong Kimberly J3,Shatkin Jo Anne3,Sayes Christie M12

Affiliation:

1. Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA

2. Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA

3. Vireo Advisors, LLC, Boston, MA, 02130-4323, USA

Abstract

AbstractFibrillated cellulose is a next-generation material in development for a variety of applications, including use in food and food-contact materials. An alternative testing strategy including simulated digestion was developed to compare the physical, chemical, and biological characteristics of seven different types of fibrillated cellulose, following European Food Safety Authority guidance. Fibrillated forms were compared to a conventional form of cellulose which has been used in food for over 85 years and has Generally Recognized as safe regulatory status in the USA. The physical and chemical characterization of fibrillated celluloses demonstrate that these materials are similar physically and chemically, which composed of the same fundamental molecular structure and exhibit similar morphology, size, size distribution, surface charge, and low levels of impurities. Simulated gastrointestinal and lysosomal digestions demonstrate that these physical and chemical similarities remain following exposure to conditions that mimic the gastrointestinal tract or intracellular lysosomes. A toxicological investigation with an advanced intestinal co-culture model found that exposure to each of the fibrillated and conventional forms of cellulose, in either the pristine or digested form at 0.4% by weight, showed no adverse toxicological effects including cytotoxicity, barrier integrity, oxidative stress, or inflammation. The results demonstrate the physical, chemical, and biological similarities of these materials and provide substantive evidence to support their grouping and ability to read-across data as part of a food safety demonstration.

Funder

Department of Environmental Science and Vireo Advisors, LLC

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3