Inhibition of rat brain and human red cell acetylcholinesterase by thiocarbamate herbicides

Author:

Lock Edward A12

Affiliation:

1. School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK

2. Biochemical Toxicology Section, Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK

Abstract

AbstractThiocarbamates are a major class of herbicides that were used extensively in the agricultural industry. Toxicological evaluation showed molinate caused reproductive impairment in male rats, whilst others produced behavioural effects at high doses. Rats dosed with molinate either as a single large oral dose of 100 mg/kg or as multiple doses of 50 mg/kg for 7 days produced inhibition of brain acetylcholinesterase (AChE). Molinate and other thiocarbamate herbicides undergo metabolism to form sulphoxides that can carbamoylate thiol’s such as glutathione and proteins. We have chemically synthesised the sulphoxide and sulphone metabolites of six thiocarbamate herbicides and examined their ability to inhibit rat brain and human red cell AChE in vitro. Parent thiocarbamates were inactive, whilst the sulphoxides produced inhibition with IC50’s in the 1–10 mM range, the sulphone metabolites were the most active with IC50’s for molinate, pebulate, EPTC and vernolate in the μM range. Inhibition was both time- and dose-dependent with biomolecular rate constants for the inhibition of the human red cell enzyme of 0.3 × 102 and 2.0 × 102 M−1 min−1 for molinate sulphoxide and sulphone, respectively. No recovery of enzyme activity, with either enzyme, was seen following dilution of the inhibitor to a concentration that does not inhibit the enzyme for up to 24 h at 25°C at pH 7.4. The metabolites of these thiocarbamate herbicides are rather poor inhibitors of AChE when compared to the organophosphorus ester, paraoxon or the monomethylcarbamate, eserine. Unlike eserine the inhibition produced by the thiocarbamates is irreversible.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3