Long-term repetitive exposure to excess iodine induces mitochondrial apoptosis, and alters monoamine neurotransmitters in hippocampus of rats of different genders

Author:

Cui Yushan1,Zhang Bin2,Zhang Zushan3,Nie Junyan3,Liu Hongliang3ORCID

Affiliation:

1. Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, P.R. China

2. Scientific Fitness and Health Promotion Research Center, China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, P.R. China

3. School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China

Abstract

Abstract The influence of excess iodine on human health has been paid more and more attention. Although numerous studies have reported that excess iodine may cause deleterious effects, the mental damage and its mechanism is yet to be identified. Using Sprague-Dawley rats exposed to excess iodine from pregnancy to 6 months post-delivery as in vivo model, this study explored the impacts of long-term repetitive excess iodine administration on the hippocampus of offspring rats, focusing on mitochondrial apoptosis pathway, with changes in monoamine neurotransmitters. The results showed that excess iodine could increase urinary iodine and brain organ coefficient in offspring of both genders, change the hippocampal cell structure, and damage the spatial learning and memory capacities. Poly ADP-ribose polymerase (PARP), P53, Cleaved Caspase-3, and cytochrome C proteins expression increased and Bcl2 protein expression decreased in hippocampus of excess iodine-treated offspring, indicating that excess iodine could activate the mitochondrial apoptosis pathway. Besides, excess iodine showed different effects on monoamine neurotransmitter in different gender. Collectively, our experimental data indicated that the learning and memory impairment induced by excess iodine may be mediated via mitochondrial apoptotic pathway. Long-term repetitive excess iodine exposure affected monoamine neurotransmitters in hippocampus of offspring rats.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3