Ameliorative impacts of sinapic acid against mercuric chloride-induced renal toxicity: role of antioxidants and inflammatory cytokines

Author:

Mehmood Arshad1ORCID,Soliman Mohamed Mohamed2ORCID,Almalki Daklallah A3ORCID,Alotaibi Khalid S4ORCID,Youssef Gehan Basiony Ahmed5ORCID,Althobaiti Saed6ORCID

Affiliation:

1. Jiangsu University School of Food and Biological Engineering, , 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China

2. Turabah University College Department of Clinical Laboratory Sciences, , Turabah, Taif University, 21995, Saudi Arabia

3. Faculty of Science and Arts Biology department, , Al-Mikhwah, Al-Baha University, Al-Baha 65528, Saudi Arabia

4. College of Applied Sciences General Science and English Language Department, , AlMaarefa University, Riyadh, 71666, Saudi Arabia

5. Veterinary Teaching Hospital Department of Forensic Medicine and Toxicology, , Faculty of Veterinary Medicine, Benha University, PO 13736, Benha, Egypt

6. Turabah University College Department of Biology, , Taif University, Taif 21995, Saudi Arabia

Abstract

Abstract Because of their beneficial properties, natural products, especially medicinal plants, are becoming increasingly popular worldwide and play a significant role in research. This study was aimed to evaluate the nephroprotective effect of sinapic acid against mercuric chloride-induced renal toxicity in mice. The mice were allocated to four groups named a normal group (G1), model group (G2; received HgCl2, 1 mg/kg bw), treatments groups (G3 and G4: received 50 and 100 mg/kg bw of sinapic acid together with HgCl2). Mice received HgCl2 remarkably showed alteration in all examined biochemical biomarkers (urea, creatinine, and bilirubin), and induced alteration in blood cell picture and anemia. HgCl2 intoxication decreased both systemic and renal antioxidant activity and induced over all oxidative stress as indicated by alteration in inflammation and oxidative stress associated markers. HgCl2 affected renal histology with leukocytic and inflammatory cell infiltration, fibrosis and tubular necrosis. Administration of sinapic acid (50 and 100 mg/kg bw) markedly restored the HgCl2−induced oxidative stress (serum and renal: MDA, GSH, CAT, SOD, and T-AOC), proinflammatory cytokines (serum and renal: TNF-α, IL-6, IL-1β, and PGE2) and restored the changes on biochemical markers, and hematological parameters (hemoglobin, erythrocytes, platelets, and leukocytes). Taken together, the results of the present study disclose that sinapic acid has the potential to attenuate HgCl2-induced renal toxicity and may be an ideal choice against mercury poisoning.

Funder

Taif University, Saudi Arabia

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3