Acoustic complexity of pup isolation calls in Mongolian hamsters: 3-frequency phenomena and chaos

Author:

Rutovskaya Marina V1,Volodin Ilya A12ORCID,Feoktistova Natalia Y3,Surov Alexey V3,Gureeva Anna V3,Volodina Elena V1

Affiliation:

1. Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences , Moscow 119071 , Russia

2. Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University , Moscow 119234 , Russia

3. Department of Comparative Ethology and Biocommunication, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences , Moscow 119071 , Russia

Abstract

Abstract Studying pup isolation calls of wild rodents provides background for developing new early-life animal models for biomedical research and drug testing. This study discovered a highly complex acoustic phenotype of pup isolation calls in 4–5-day-old Mongolian hamsters Allocricetulus curtatus. We analyzed the acoustic structure of 5,010 isolation calls emitted in the broad range of frequencies (sonic, below 20 kHz, and ultrasonic, from 20 to 128 kHz) by 23 pups during 2-min isolation test trials, 1 trial per pup. In addition, we measured 5 body size parameters and the body weight of each pup. The calls could contain up to 3 independent fundamental frequencies in their spectra, the low (f0), the medium (g0), and the high (h0), or purely consisted of chaos in which the fundamental frequency could not be tracked. By presence/absence of the 3 fundamental frequencies or their combinations and chaos, we classified calls into 6 distinctive categories (low-frequency [LF]-f0, LF-chaos, high-frequency [HF]-g0, HF-h0, HF-g0 + h0, and HF-chaos) and estimated the relative abundance of calls in each category. Between categories, we compared acoustic parameters and estimated their relationship with pup body size index. We discuss the results of this study with data on the acoustics of pup isolation calls reported for other species of rodents. We conclude that such high complexity of Mongolian hamster pup isolation calls is unusual for rodents. Decreased acoustic complexity serves as a good indicator of autism spectrum disorders in knockout mouse models, which makes knockout hamster models prospective new wild animal model of neurodevelopmental disorders.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3