Differential response of the photosynthetic machinery to dehydration in older and younger resurrection plants

Author:

Oung Hui Min Olivia1,Mukhopadhyay Roma1,Svoboda Vaclav1,Charuvi Dana2,Reich Ziv3,Kirchhoff Helmut1ORCID

Affiliation:

1. Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA

2. Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion 7505101, Israel

3. Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract

Abstract A group of vascular plants called homoiochlorophyllous resurrection plants evolved unique capabilities to protect their photosynthetic machinery against desiccation-induced damage. This study examined whether the ontogenetic status of the resurrection plant Craterostigma pumilum has an impact on how the plant responds to dehydration at the thylakoid membrane level to prepare cells for the desiccated state. Thus, younger plants (<4 months) were compared with their older (>6 months) counterparts. Ultrastructural analysis provided evidence that younger plants suppressed senescence-like programs that are realized in older plants. During dehydration, older plants degrade specific subunits of the photosynthetic apparatus such as the D1 subunit of PSII and subunits of the cytochrome b6f complex. The latter leads to a controlled down-regulation of linear electron transport. In contrast, younger plants increased photoprotective high-energy quenching mechanisms and maintained a high capability to replace damaged D1 subunits. It follows that depending on the ontogenetic state, either more degradation-based or more photoprotective mechanisms are employed during dehydration of Craterostigma pumilum.

Funder

United States–Israel Binational Agricultural Research and Development Fund

U.S. Department of Agriculture

National Institute of Food and Agriculture

National Science Foundation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3