Probing Bilin–Protein Interaction in the Protochromic Photocycle of Cyanobacteriochrome RcaE by Site-Directed Mutagenesis

Author:

Kamo Takanari1,Matsushita Takaaki1,Hamada Masako1,Fujisawa Tomotsumi2,Eki Toshihiko1ORCID,Unno Masashi2,Hirose Yuu1ORCID

Affiliation:

1. Department of Applied Chemistry and Life Science, Toyohashi University of Technology , 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan

2. Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University , 1 Honjocho, Saga 840-8502, Japan

Abstract

Abstract Cyanobacteriochromes (CBCRs) are members of the phytochrome superfamily of photosensor proteins that bind a bilin chromophore. CBCRs exhibit substantial diversity in their absorption wavelengths through a variety of bilin–protein interactions. RcaE is the first discovered CBCR as a regulator of chromatic acclimation, where cyanobacteria optimize the absorption wavelength of their photosynthetic antenna. RcaE undergoes a reversible photoconversion between green-absorbing (Pg) and red-absorbing (Pr) states, where the bilin chromophore adopts a deprotonated C15-Z,anti and a protonated C15-E,syn structures, respectively. This photocycle is designated as the ‘protochromic photocycle’ as the change in the bilin protonation state is responsible for the large absorption shift. With the guidance of recently determined Pg and Pr structures of RcaE, in this study, we investigated bilin–protein interaction by site-directed mutagenesis on three key residues referred to as a protochromic triad and also other conserved residues interacting with the bilin. Among the protochromic triad residues, Glu217 and Lys261 are critical for the formation of the Pr state, while Leu249 is critical for the formation of both Pg and Pr states. Substitution in other conserved residues, including Val218, Phe219 and Pro220 in the wind-up helix and Phe252, Phe214 and Leu209 in a part of the bilin-binding pocket, had less substantial effects on the spectral sensitivity in RcaE. These data provide insights into our understanding of the bilin–protein interaction in the protochromic photocycle and also its evolution in the CBCRs.

Funder

The Foundation for the promotion of Ion Engineering

Japan Society for the Promotion of Science

JGC-S Scholarship Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3