Affiliation:
1. FENG and Tube Lifecycle Engineering Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
2. CFV Solar Test Laboratory, Albuquerque, NM 87106, USA
3. Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
Abstract
Abstract
Despite promising advances with metal-organic frameworks (MOFs) as stationary phases for chromatography, the application of MOFs for one- and two-dimensional micro-gas chromatography (μGC and μGC × μGC) applications has yet to be shown. We demonstrate for the first time, μGC columns coated with two different MOFs, HKUST-1 and ZIF-8, for the rapid separation of high volatility light alkane hydrocarbons (natural gas) and determined the partition coefficients for toxic industrial chemicals, using μGC and μGC × μGC systems. Complete separation of natural gas components, methane through pentane, was completed within 1 min, with sufficient resolution to discriminate n-butane from i-butane. Layer-by-layer controlled deposition cycles of the MOFs were accomplished to establish the optimal film thickness, which was validated using GC (sorption thermodynamics), quartz-crystal microbalance gravimetric analysis and scanning electron microscopy. Complete surface coverage was not observed until after ~17 deposition cycles. Propane retention factors with HKUST-1-coated μGC and a state-of-the-art polar, porous-layer open-tubular (PLOT) stationary phase were approximately the same at ~7.5. However, with polar methanol, retention factors with these two stationary phases were 748 and 59, respectively, yielding methanol-to-propane selectivity factors of ~100 and ~8, respectively, a 13-fold increase in polarity with HKUST-1. These studies advance the applications of MOFs as μGC stationary phase.
Funder
Sandia National Laboratories
Laboratory Directed Research and Development
Publisher
Oxford University Press (OUP)
Subject
General Medicine,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献