Crayfish chimneys function as burrow-ventilation structures

Author:

Stoeckel James A1ORCID,Szoka Mary23ORCID,Abdelrahman Hisham A41ORCID,Davis Jeremiah D2ORCID,Blersch David M2ORCID,Helms Brian S5ORCID

Affiliation:

1. School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn,AL 36849, USA

2. Biosystems Engineering Department, Auburn University, Auburn, AL 36849, USA

3. Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA

4. Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt

5. Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA

Abstract

Abstract Most crayfish species are capable of constructing underground burrows. Burrow construction provides crayfishes the potential to actively engineer microhabitat and optimize local environmental conditions. Little attention, however, has been paid to quantifying the environmental outcomes of burrow morphology. We examined the potential of chimneys to ventilate burrows via wind-assisted buoyancy ventilation. We first conducted proof-of-concept trials in the field using smoke tracers. We then used a wind tunnel to quantify effects of wind velocity, chimney height, burrow orientation, and tunnel angle on model burrow ventilation rates. We developed a predictive model to predict burrow airflow based on endogenous and exogenous factors, and proofed the model with field measurements from a natural burrow. Proof-of-concept trials showed that during breezy conditions (i.e., 8–16 km−h wind gusts), smoke generated near a natural burrow was rapidly drawn into the non-chimney entry, through the burrow, and out the chimney. Wind-tunnel trials revealed significant effects of chimney height and wind velocity on burrow airflow, but no significant effects of burrow orientation towards the prevailing wind direction, nor of the angle of the burrow beneath the chimney. A model developed from wind-tunnel trials predicted air velocities exiting a theoretical chimney that were within 85% of observed velocities exiting natural chimney-burrow complexes. We conclude that crayfish chimneys can serve as passive ventilation systems for crayfish burrows, with chimney height and wind velocity exerting particularly strong effects on airflow. Costs and benefits associated with chimney construction and ventilation are still speculative but should comprise a productive line of research for future studies focused on burrowing crayfish ecology and conservation.

Funder

Alabama Agricultural Experiment Station

Auburn University

National Institute of Food and Agriculture

U.S. Department of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Aquatic Science

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3