A new approach allows morphological recognition of cryptic diversity of the krill genus Hansarsia (formerly Nematoscelis)

Author:

Vereshchaka Alexander L1ORCID,Shatravin Alexander V12,Kulagin Dmitry N1,Lunina Anastasiia A1ORCID

Affiliation:

1. Shirshov Institute of Oceanology, Russian Academy of Sciences , Nahimovskiy Prospect, 36, Moscow 117997 , Russia

2. Prokhorov General Physics Institute of the Russian Academy of Sciences , Vavilova St. 38, 119991, Moscow , Russia

Abstract

Abstract Cryptic and pseudocryptic species are found on all major branches of the tree of life and probably represent a significant portion of undiscovered biodiversity, yet their identification is currently possible solely on the basis of molecular analyses. Here, we tested an alternative approach and hypothesized that all genetic clades might be identified on a morphological basis, and we analysed the morphology of nine previously detected genetic clades of Hansarsia. We made 169 sets of measurements (12 quantitative characters for each), ran multinomial logistic regression models, and showed a high ability of these models to generalize (i.e. to be able to classify correctly new specimens not included in our data matrix). The five to seven most ‘powerful’ characters provided a significant detection rate; these characters were shown to represent distinct evolutionary traits. Our findings cast some doubt on the presence of the ‘merely’ cryptic species; instead, we suggest that any genetic divergence found via traditional genetic markers is also mirrored in morphological divergence and can be detected using a combination of quantitative characters and appropriate mathematical tools. We provide a script key to genetic clades of the Atlantic Hansarsia based solely on morphological measurements and encourage other researchers to use quantitative morphological characters for detection of cryptic clades in other taxa.

Funder

Russian Scence Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3