Multiscale dynamical cross-talk in zeolite-catalyzed methanol and dimethyl ether conversions

Author:

Lin Shanfan12,Zhi Yuchun1,Liu Zhiqiang3,Yuan Jiamin3,Liu Wenjuan42,Zhang Wenna1,Xu Zhaochao4,Zheng Anmin3,Wei Yingxu1,Liu Zhongmin152

Affiliation:

1. National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China

2. Energy College, University of Chinese Academy of Sciences , Beijing 100049 , China

3. National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences , Wuhan 430071 , China

4. Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China

5. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China

Abstract

Abstract Establishing a comprehensive understanding of the dynamical multiscale diffusion and reaction process is crucial for zeolite shape-selective catalysis and is urgently demanded in academia and industry. So far, diffusion and reaction for methanol and dimethyl ether (DME) conversions have usually been studied separately and focused on a single scale. Herein, we decipher the dynamical molecular diffusion and reaction process for methanol and DME conversions within the zeolite material evolving with time, at multiple scales, from the scale of molecules to single catalyst crystal and catalyst ensemble. Microscopic intracrystalline diffusivity is successfully decoupled from the macroscopic experiments and verified by molecular dynamics simulation. Spatiotemporal analyses of the confined carbonaceous species allow us to track the migratory reaction fronts in a single catalyst crystal and the catalyst ensemble. The constrained diffusion of DME relative to methanol alleviates the high local chemical potential of the reactant by attenuating its local enrichment, enhancing the utilization efficiency of the inner active sites of the catalyst crystal. In this context, the dynamical cross-talk behaviors of material, diffusion and reaction occurring at multiple scales is uncovered. Zeolite catalysis not only reflects the reaction characteristics of heterogeneous catalysis, but also provides enhanced, moderate or suppressed local reaction kinetics through the special catalytic micro-environment, which leads to the heterogeneity of diffusion and reaction at multiple scales, thereby realizing efficient and shape-selective catalysis.

Funder

National Natural Science Foundation of China

Dalian Institute of Chemical Physics

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3