The light curve simulations of the 2021 anomalous event in SS Cygni

Author:

Kimura Mariko1,Osaki Yoji2

Affiliation:

1. Institute of Physical and Chemical Research (RIKEN) , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan

2. Department of Astronomy, School of Science, The University of Tokyo , 7-3-1 Hongo, Tokyo 113-0033 , Japan

Abstract

Abstract The prototype dwarf nova SS Cyg unexpectedly exhibited an anomalous event in its light curve in the early few months of 2021 in which regular dwarf nova-type outbursts stopped, and only small-amplitude fluctuations occurred. Inspired by this event, we have performed numerical simulations of light curves of SS Cyg by varying mass transfer rates and varying viscosity parameters in the cool disk. We have also studied the effect of gas-stream overflows beyond the outer disk edge in the light curve simulations. We have confirmed that the enhanced mass transfer is not likely to be responsible for the 2021 anomalous event or its forerunner. We have found that the enhancement of the viscosity in the disk may reproduce the forerunner of that event but may not be sufficient to explain the 2021 anomalous event, although the latter result might be particular to the thermal equilibrium curve we used. Within our simulations, a model of the gas-stream overflow with a slightly higher mass transfer rate than that of our standard model reproduces light curves similar to the 2021 anomalous event. We suggest that the gas-stream overflow is necessary to reproduce that event. The gas-stream overflow may also be responsible for the abnormally high X-ray flux during the normal quiescent state in SS Cyg.

Funder

RIKEN

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3