Abstract
Abstract
We reexamine the steady spherical wind from distributed sources, such as star clusters and a galactic center, taking into account the radiative force from distributed sources and mass reduction via orbital motions. We consider a cold dusty wind, an isothermal gaseous flow, and a nonisothermal general one without/with a central mass and a stagnation radius for various powers of source distributions. We perform singular point analysis for each case, and obtain a transonic solution, if one exists. We find that thermally driven outflows can emerge in limited situations, such that the source distribution is rather steep in the isothermal flow. On the other hand, under the appropriate conditions radiatively driven winds can easily be produced. Radiative cluster winds without a central mass could emerge from newly born star clusters or neutron star clusters, whereas those with a central mass could appear from active galactic nuclei. Radiative cluster winds would also operate in first star clusters.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics