A high-speed and high-efficiency imaging polarimeter based on ferroelectric liquid crystal retarders: Design and test

Author:

Guo Jing12,Ren Deqing3,Zhu Yongtian124,Zhang Xi12

Affiliation:

1. National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, China

2. CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China

3. Physics & Astronomy Department, California State University Northridge, Northridge, CA 91330, USA

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Polarimeters play a key role in investigating solar magnetic fields. In this paper, a High speed and high efficiency Imaging POlarimeter (HIPO) is proposed based on a pair of ferroelectric liquid crystal retarders (FLCs), with the ultimate goal of measuring magnetic fields of prominences and filaments from the ground. A unique feature of the HIPO is that it enables high cadence polarization measurements covering a wide field of view (FOV); the modulation frequency of the HIPO is able to achieve ∼100 Hz, which greatly suppresses the seeing-induced crosstalk, and the maximum FOV can reach 62″ × 525″. Additionally, FLC retardances under low and high states were calibrated individually and found to have a slight discrepancy, which is neglected in most works. Based on FLC calibration results, an optimization was performed using a constrained nonlinear minimization approach to obtain the maximum polarimetric efficiency. Specifically, optimized efficiencies of the Stokes Q, U, and V are well balanced and determined as (ξQ, ξU, ξV) = (0.5957, 0.5534, 0.5777), yielding a total efficiency of 0.9974. Their practical efficiencies are measured as (ξQ′, ξU′, ξV′) = (0.5934, 0.5385, 0.5747), slightly below the optimized values but still resulting in a high total efficiency of 0.9861. The HIPO shows advantages in terms of modulation frequency and polarimetric efficiency compared with most other representative ground-based solar polarimeters. In the observations, measurement accuracy is found to be better than 2.7 × 10−3 by evaluating full Stokes Hα polarimetry results of the chromosphere. This work lays a foundation for the development of high-speed and high-accuracy polarimeters for our next-generation solar instruments.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3