Efficient ways to combine data from broiler and layer chickens to account for sequential genomic selection

Author:

Hidalgo Jorge1ORCID,Lourenco Daniela1,Tsuruta Shogo1ORCID,Bermann Matias1ORCID,Breen Vivian2,Herring William2,Misztal Ignacy1ORCID

Affiliation:

1. Department of Animal and Dairy Science, University of Georgia , Athens, GA 30602 , USA

2. Research & Development, Cobb-Vantress Inc., Siloam Springs , AR 72761 , USA

Abstract

Abstract In broiler breeding, superior individuals for growth become parents and are later evaluated for reproduction in an independent evaluation; however, ignoring broiler data can produce inaccurate and biased predictions. This research aimed to determine the most accurate, unbiased, and time-efficient approach for jointly evaluating reproductive and broiler traits. The data comprised a pedigree with 577K birds, 146K genotypes, phenotypes for three reproductive (egg production [EP], fertility [FE], hatch of fertile eggs [HF]; 9K each), and four broiler traits (body weight [BW], breast meat percent [BP], fat percent [FP], residual feed intake [RF]; up to 467K). Broiler data were added sequentially to assess the impact on the quality of predictions for reproductive traits. The baseline scenario (RE) included pedigrees, genotypes, and phenotypes for reproductive traits of selected animals; in RE2, we added their broiler phenotypes; in RE_BR, broiler phenotypes of nonselected animals, and in RE_BR_GE, their genotypes. We computed accuracy, bias, and dispersion of predictions for hens from the last two breeding cycles and their sires. We tested three core definitions for the algorithm of proven and young to find the most time-efficient approach: two random cores with 7K and 12K animals and one with 19K animals, containing parents and young animals. From RE to RE_BR_GE, changes in accuracy were null or minimal for EP (0.51 in hens, 0.59 in roosters) and HF (0.47 in hens, 0.49 in roosters); for FE in hens (roosters), it changed from 0.4 (0.49) to 0.47 (0.53). In hens (roosters), bias (additive SD units) decreased from 0.69 (0.7) to 0.04 (0.05) for EP, 1.48 (1.44) to 0.11 (0.03) for FE, and 1.06 (0.96) to 0.09 (0.02) for HF. Dispersion remained stable in hens (roosters) at ~0.93 (~1.03) for EP, and it improved from 0.57 (0.72) to 0.87 (1.0) for FE and from 0.8 (0.79) to 0.88 (0.87) for HF. Ignoring broiler data deteriorated the predictions’ quality. The impact was significant for the low heritability trait (0.02; FE); bias (up to 1.5) and dispersion (as low as 0.57) were farther from the ideal value, and accuracy losses were up to 17.5%. Accuracy was maintained in traits with moderate heritability (~0.3; EP and HF), and bias and dispersion were less substantial. Adding information from the broiler phase maximized accuracy and unbiased predictions. The most time-efficient approach is a random core with 7K animals in the algorithm for proven and young.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3