Prediction of body condition in Jersey dairy cattle from 3D-images using machine learning techniques

Author:

Stephansen Rasmus B1ORCID,Manzanilla-Pech Coralia I V1ORCID,Gebreyesus Grum1,Sahana Goutam1,Lassen Jan12

Affiliation:

1. Center for Quantitative Genetics and Genomics, Aarhus University , 8000-Aarhus C , Denmark

2. Viking Genetics , Assentoft, 8960-Randers , Denmark

Abstract

Abstract The body condition of dairy cows is a crucial health and welfare indicator that is widely acknowledged. Dairy herds with a well-management body condition tend to have more fertile and functional cows. Therefore, routine recording of high-quality body condition phenotypes is required. Automated prediction of body condition from 3D images can be a cost-effective approach to current manual recording by technicians. Using 3D-images, we aimed to build a reliable prediction model of body condition for Jersey cows. The dataset consisted of 808 individual Jersey cows with 2,253 phenotypes from three herds in Denmark. Body condition was scored on a 1 to 9 scale and transformed into a 1 to 5 scale with 0.5-unit differences. The cows’ back images were recorded using a 3D camera (Microsoft Xbox One Kinect v2). We used contour and back height features from 3D-images as predictors, together with class predictors (evaluator, herd, evaluation round, parity, lactation week). The performance of machine learning algorithms was assessed using H2O AutoML algorithm (h2o.ai). Based on outputs from AutoML, DeepLearning (DL; multi-layer feedforward artificial neural network) and Gradient Boosting Machine (GBM) algorithms were implemented for classification and regression tasks and compared on prediction accuracy. In addition, we compared the Partial Least Square (PLS) method for regression. The training and validation data were divided either through a random 7:3 split for 10 replicates or by allocating two herds for training and one herd for validation. The accuracy of classification models showed the DL algorithm performed better than the GBM algorithm. The DL model achieved a mean accuracy of 48.1% on the exact phenotype and 93.5% accuracy with a 0.5-unit deviation. The performances of PLS and DL regression methods were comparable, with mean coefficient of determination of 0.67 and 0.66, respectively. When we used data from two herds for training and the third herd as validation, we observed a slightly decreased prediction accuracy compared to the 7:3 split of the dataset. The accuracies for DL and PLS in the herd validation scenario were > 38% on the exact phenotype and > 87% accuracy with 0.5-unit deviation. This study demonstrates the feasibility of a reliable body condition prediction model in Jersey cows using 3D-images. The approach developed can be used for reliable and frequent prediction of cows’ body condition to improve dairy farm management and genetic evaluations.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3