Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells

Author:

Baker Clare V H1ORCID,Modrell Melinda S1

Affiliation:

1. Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK

Abstract

Abstract The vertebrate lateral line system comprises a mechanosensory division, with neuromasts containing hair cells that detect local water movement (“distant touch”); and an electrosensory division, with electrosensory organs that detect the weak, low-frequency electric fields surrounding other animals in water (primarily used for hunting). The entire lateral line system was lost in the amniote lineage with the transition to fully terrestrial life; the electrosensory division was lost independently in several lineages, including the ancestors of frogs and of teleost fishes. (Electroreception with different characteristics subsequently evolved independently within two teleost lineages.) Recent gene expression studies in a non-teleost actinopterygian fish suggest that electroreceptor ribbon synapses employ the same transmission mechanisms as hair cell ribbon synapses, and show that developing electrosensory organs express transcription factors essential for hair cell development, including Atoh1 and Pou4f3. Previous hypotheses for electroreceptor evolution suggest either that electroreceptors and hair cells evolved independently in the vertebrate ancestor from a common ciliated secondary cell, or that electroreceptors evolved from hair cells. The close developmental and putative physiological similarities implied by the gene expression data support the latter hypothesis, i.e., that electroreceptors evolved in the vertebrate ancestor as a “sister cell-type” to lateral line hair cells.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3