DeepRegFinder: deep learning-based regulatory elements finder

Author:

Ramakrishnan Aarthi1ORCID,Wangensteen George2,Kim Sarah3,Nestler Eric J1ORCID,Shen Li1ORCID

Affiliation:

1. Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY 10029, United States

2. Department of Computer Science, Brown University , Providence, RI 02912, United States

3. Cancer Program, Broad Institute , Cambridge, MA 02142, United States

Abstract

Abstract Summary Enhancers and promoters are important classes of DNA regulatory elements (DREs) that govern gene expression. Identifying them at a genomic scale is a critical task in bioinformatics. The DREs often exhibit unique histone mark binding patterns, which can be captured by high-throughput ChIP-seq experiments. To account for the variations and noises among the binding sites, machine learning models are trained on known enhancer/promoter sites using histone mark ChIP-seq data and predict enhancers/promoters at other genomic regions. To this end, we have developed a highly customizable program named DeepRegFinder, which automates the entire process of data processing, model training, and prediction. We have employed convolutional and recurrent neural networks for model training and prediction. DeepRegFinder further categorizes enhancers and promoters into active and poised states, making it a unique and valuable feature for researchers. Our method demonstrates improved precision and recall in comparison to existing algorithms for enhancer prediction across multiple cell types. Moreover, our pipeline is modular and eliminates the tedious steps involved in preprocessing, making it easier for users to apply on their data quickly. Availability and implementation https://github.com/shenlab-sinai/DeepRegFinder

Funder

National Institutes of Health

Friedman Brain Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3