FASTdRNA: a workflow for the analysis of ONT direct RNA sequencing

Author:

Chen Xiaofeng12,Liu Yongqi12,Lv Kaiwen12ORCID,Wang Meiling12,Liu Xiaoqin12,Li Bosheng12ORCID

Affiliation:

1. Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences , Weifang, Shandong 261000, China

2. National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang , Weifang, Shandong 261325, China

Abstract

Abstract Motivation Direct RNA-seq (dRNA-seq) using Oxford Nanopore Technology (ONT) has revolutionized transcript mapping by offering enhanced precision due to its long-read length. Unlike traditional techniques, dRNA-seq eliminates the need for PCR amplification, reducing the impact of GC bias, and preserving valuable base physical information, such as RNA modification and poly(A) length estimation. However, the rapid advancement of ONT devices has set higher standards for analytical software, resulting in potential challenges of software incompatibility and reduced efficiency. Results We present a novel workflow, called FASTdRNA, to manipulate dRNA-seq data efficiently. This workflow comprises two modules: a data preprocessing module and a data analysis module. The preprocessing data module, dRNAmain, encompasses basecalling, mapping, and transcript counting, which are essential for subsequent analyses. The data analysis module consists of a range of downstream analyses that facilitate the estimation of poly(A) length, prediction of RNA modifications, and assessment of alternative splicing events across different conditions with duplication. The FASTdRNA workflow is designed for the Snakemake framework and can be efficiently executed locally or in the cloud. Comparative experiments have demonstrated its superior performance compared to previous methods. This innovative workflow enhances the research capabilities of dRNA-seq data analysis pipelines by optimizing existing processes and expanding the scope of analysis. Availability and implementation The workflow is freely available at https://github.com/Tomcxf/FASTdRNA under an MIT license. Detailed install and usage guidance can be found in the GitHub repository.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3