PM-CNN: microbiome status recognition and disease detection model based on phylogeny and multi-path neural network

Author:

Wang Qiangqiang1,Fan Xiaoqian2,Wu Shunyao1,Su Xiaoquan1ORCID

Affiliation:

1. College of Computer Science and Technology, Qingdao University , Qingdao 266071, China

2. Department of Gastroenterology, Shouguang Hospital of Traditional Chinese Medicine , Weifang 262700, China

Abstract

Abstract Motivation The human microbiome, found throughout various body parts, plays a crucial role in health dynamics and disease development. Recent research has highlighted microbiome disparities between patients with different diseases and healthy individuals, suggesting the microbiome’s potential in recognizing health states. Traditionally, microbiome-based status classification relies on pre-trained machine learning (ML) models. However, most ML methods overlook microbial relationships, limiting model performance. Results To address this gap, we propose PM-CNN (Phylogenetic Multi-path Convolutional Neural Network), a novel phylogeny-based neural network model for multi-status classification and disease detection using microbiome data. PM-CNN organizes microbes based on their phylogenetic relationships and extracts features using a multi-path convolutional neural network. An ensemble learning method then fuses these features to make accurate classification decisions. We applied PM-CNN to human microbiome data for status and disease detection, demonstrating its significant superiority over existing ML models. These results provide a robust foundation for microbiome-based state recognition and disease prediction in future research and applications. Availability and implementation PM-CNN software is available at https://github.com/qdu-bioinfo/PM_CNN.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shandong Province Youth Entrepreneurial Talent Introduction and Training Program

Shandong Province Taishan Scholars Youth Experts Program

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3