Knowledge graph embeddings in the biomedical domain: are they useful? A look at link prediction, rule learning, and downstream polypharmacy tasks

Author:

Gema Aryo Pradipta1,Grabarczyk Dominik1,De Wulf Wolf1,Borole Piyush1,Alfaro Javier Antonio123,Minervini Pasquale1,Vergari Antonio1,Rajan Ajitha1ORCID

Affiliation:

1. School of Informatics, University of Edinburgh , Edinburgh EH8 9AB, United Kingdom

2. International Centre for Cancer Vaccine Science, University of Gdańsk , Gdańsk 80-822, Poland

3. Department of Biochemistry and Microbiology, University of Victoria , British Columbia V8W 2Y2, Canada

Abstract

Abstract Summary Knowledge graphs (KGs) are powerful tools for representing and organizing complex biomedical data. They empower researchers, physicians, and scientists by facilitating rapid access to biomedical information, enabling the discernment of patterns or insights, and fostering the formulation of decisions and the generation of novel knowledge. To automate these activities, several KG embedding algorithms have been proposed to learn from and complete KGs. However, the efficacy of these embedding algorithms appears limited when applied to biomedical KGs, prompting questions about whether they can be useful in this field. To that end, we explore several widely used KG embedding models and evaluate their performance and applications using a recent biomedical KG, BioKG. We also demonstrate that by using recent best practices for training KG embeddings, it is possible to improve performance over BioKG. Additionally, we address interpretability concerns that naturally arise with such machine learning methods. In particular, we examine rule-based methods that aim to address these concerns by making interpretable predictions using learned rules, achieving comparable performance. Finally, we discuss a realistic use case where a pretrained BioKG embedding is further trained for a specific task, in this case, four polypharmacy scenarios where the goal is to predict missing links or entities in another downstream KGs in four polypharmacy scenarios. We conclude that in the right scenarios, biomedical KG embeddings can be effective and useful. Availability and implementation Our code and data is available at https://github.com/aryopg/biokge.

Funder

United Kingdom Research and Innovation

Publisher

Oxford University Press (OUP)

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3