Defective autophagy of pericytes enhances radiation-induced senescence promoting radiation brain injury

Author:

Luo Na1,Zhu Wenjun1,Li Xiaoyu2,Fu Min1,Zhang Yuanyuan,Yang Feng1,Zhang Yiling3,Chen Ziqi1,Zhang Qiang1,Peng Bi1,Li Qianxia1,Chen Xin1,Liu Yuanhui1,Hu Guangyuan1,Peng Xiaohong1ORCID

Affiliation:

1. Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China

2. Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China

3. Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China

Abstract

Abstract Background Radiation-induced brain injury (RBI) represents a major challenge for cancer patients undergoing cranial radiotherapy. However, the molecular mechanisms and therapeutic strategies of RBI remain inconclusive. With the continuous exploration of the mechanisms of RBI, an increasing number of studies have implicated cerebrovascular dysfunction as a key factor in RBI-related cognitive impairment. As pericytes are a component of the neurovascular unit, there is still a lack of understanding in current research about the specific role and function of pericytes in RBI. Methods We constructed a mouse model of RBI-associated cognitive dysfunction in vivo and an in vitro radiation-induced pericyte model to explore the effects of senescent pericytes on the blood-brain barrier (BBB) and normal central nervous system cells, even glioma cells. To further clarify the effects of pericyte autophagy on senescence, molecular mechanisms were explored at the animal and cellular levels. Finally, we validated the clearance of pericyte senescence by using a senolytic drug and all-trans retinoic acid to investigate the role of radiation-induced pericyte senescence. Results Our findings indicated that radiation-induced pericyte senescence plays a key role in BBB dysfunction, leading to RBI and subsequent cognitive decline. Strikingly, pericyte senescence also contributed to the growth and invasion of glioma cells. We further demonstrated that defective autophagy in pericytes is a vital regulatory mechanism for pericyte senescence. Moreover, autophagy activated by rapamycin could reverse pericyte senescence. Notably, the elimination of senescent cells by senolytic drugs significantly mitigated radiation-induced cognitive dysfunction. Conclusions Our results demonstrated that pericyte senescence may be a promising therapeutic target for RBI and glioma progression.

Funder

National Natural Sciences Foundation of China

Beijing Xisike Oncology Research Foundation

Hubei Provincial Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3