When will the eel recover? A full life-cycle model

Author:

Åström Mårten1,Dekker Willem2

Affiliation:

1. Institute of Freshwater Research, Swedish Board of Fisheries, SE-178 93 Drottningholm, Sweden

2. Wageningen IMARES, PO Box 68, 1970 AB IJmuiden, The Netherlands

Abstract

Abstract Åström M., and Dekker W. 2007. When will the eel recover? A full life-cycle model. – ICES Journal of Marine Science, 64: 000–000: –. The European eel population has declined over the past decades in most of its distribution area, and the stock is outside safe biological limits. The EU has taken up the challenge to design a management system that ensures the escapement of 40% of spawning-stock biomass, relative to unexploited, unpolluted circumstances in unobstructed rivers. This ultimately aims to restore the spawning stock to a level at which glass eel production is not impaired, i.e. to restore to full historical glass eel recruitment. To explore the trajectory from the current depleted state to full recruitment recovery, we developed a simple model of stock dynamics, based on a simplified stock–recruitment relationship and the conventional dynamic pool assumptions. Recruitment trajectories under different future fishery regimes are explored, for the medium (one generation time) and long time-span (until full recruitment recovery). Reducing fisheries to zero, recovery is expected within ∼80 years, whereas under an ultimately sustainable fishing regime of just 10% of the current rate of fishing mortality, recovery may take more than 200 years. Moreover, management regimes, apparently leading to slight recovery of the stock in the coming 5–15 years, might still be unsustainable in the long run.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference20 articles.

1. Québec declaration of concern: worldwide decline of eel resources necessitates immediate action;Anon.;Fisheries,2003

2. Spawner escapement from yellow and silver eel fishery;Åström,2005

3. Still more spawner-recruitment curves: the hockey stick and its generalizations;Barrowman;Canadian Journal of Fisheries and Aquatic Sciences,2000

4. Matrix population models: construction, analysis, and interpretation;Caswell,2001

5. Proposal for a Council Regulation establishing measures for the recovery of the stock of European Eel (presented by the Commission).;CEC.,2005

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3