Vertical distribution of snow crab (Chionoecetes opilio) pelagic stages in the Gulf of St. Lawrence (Canada) and effect of temperature on development and survival

Author:

Ouellet Patrick1,Sainte-Marie Bernard1

Affiliation:

1. Institut Maurice-Lamontagne, Pêches et Océans Canada, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada

Abstract

Abstract Knowledge of the vertical distribution, thermal habitat, and growth of the larvae of the cold stenothermic snow crab (Chionoecetes opilio) is incomplete and inconsistent. This study explored aspects of the vertical distribution and development rate of larvae from eastern Canada. In the Gulf of St. Lawrence (GSL), during 2002, the mean vertical positions of the snow crab zoeae I and II larvae were recorded within and above the permanent thermocline and in close association with the depth of strong density discontinuities in the stratified water column. No statistically significant differences were detected between nighttime and daytime vertical positions. The water temperatures at the centre of the larvae distributions were 2–3 °C in late May in the colder northern GSL and 7–8 °C in June in the warmer southern GSL. Data from the literature and from a rearing experiment in 2014 were used to develop functions linking development and survival to water temperature. Assuming the snow crab larvae remain in the upper mixed layer until final metamorphosis, development may last 2.2–4 months depending on hatch time and location. Development would be prolonged by several weeks if premolt megalopae move into and reside in the deeper, colder waters as appears to be the case. A relative survival index suggests that optimum temperature for development is around 10.8 °C, 9.5 °C, and 8.7 °C for snow crab zoea I, zoea II, and megalopa, respectively. These results should contribute to modelling efforts that aim to evaluate the extent of larval drift and location of potential settlement areas, as well as the potential impact of climate change on snow crab in the North Atlantic.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3