From spatial pattern to ecological process through imaging zooplankton interactions

Author:

Greer Adam T1ORCID,Chiaverano Luciano M2,Treible Laura M1,Briseño-Avena Christian3,Hernandez Frank J2

Affiliation:

1. Skidaway Institute of Oceanography, University of Georgia, Savannah, GA 30602, USA

2. School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39406, USA

3. Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA 92110, USA

Abstract

Abstract Ecological interactions among marine zooplankton are poorly described because conventional sampling gears, such as plankton nets and traps, obscure the physical and biological environment that individuals experience. With in situ imagery, however, it is possible to resolve these interactions and potentially convert snapshot distributions into process-oriented oceanographic and ecological understanding. We describe a variety of imagery-detected ecological interactions with high spatial resolution in the northern Gulf of Mexico shelf waters (20–35 m bottom depth), providing new evidence of parasitism, predation, and life stage spatial structuring for different zooplankton groups. Chaetognaths were infected with an anteriorly attached, parasitic polychaete (1.1% of 33 824 individuals), and these infected chaetognaths were more common further offshore, south of a nearshore patch where unparasitized individuals reached concentrations of ∼90 m–3. Predation by Liriope spp. hydromedusae tended to occur in the shallowest 10–15 m, and doliolids formed distinct patches of different life stages, indicating that the environment is replete with sharp transitions among various ecological processes. Similar patterns in other marine ecosystems likely exist, and we encourage hybrid (machine/human expertise) approaches that broaden the scope for analysis of plankton images, which are rich sources of new ecological information and hypotheses yet to be examined quantitatively.

Funder

Gulf of Mexico Research Initiative

University of Georgia Skidaway Institute of Oceanography

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3