Deep learning for detection and counting of Nephrops norvegicus from underwater videos

Author:

Burguera Antoni Burguera1,Bonin-Font Francisco1ORCID,Chatzievangelou Damianos2ORCID,Fernandez Maria Vigo2ORCID,Aguzzi Jacopo2ORCID

Affiliation:

1. Systems, Robotics and Vision Group, University of the Balearic Islands, Department of Mathematics and Computer Sciences , Palma de Mallorca 07122 , Spain

2. Functioning and Vulnerability of Marine Environment research group, Institut de Ciencies del Mar (ICM-CSIC) , Passeig Marítim de la Barceloneta, 37–39, 08003 Barcelona , Spain

Abstract

Abstract The Norway lobster (Nephrops norvegicus) is one of the most important fishery items for the EU blue economy. This paper describes a software architecture based on neural networks, designed to identify the presence of N. norvegicus and estimate the number of its individuals per square meter (i.e. stock density) in deep-sea (350–380 m depth) Fishery No-Take Zones of the northwestern Mediterranean. Inferencing models were obtained by training open-source networks with images obtained from frames partitioning of in submarine vehicle videos. Animal detections were also tracked in successive frames of video sequences to avoid biases in individual recounting, offering significant success and precision in detection and density estimations.

Funder

Agencia Estatal de Investigación

Ministry of Science and Innovation

Publisher

Oxford University Press (OUP)

Reference71 articles.

1. Differential GPS;Agency,2024

2. A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms;Aguzzi;Rev Fish Biol Fish,2008

3. Challenges to assessment of benthic populations and biodiversity as a result of rhythmic behaviour: Video solutions from cabled observatories;Aguzzi;Oceanogr Mar Biol: An Annual Review (OMBAR),2012

4. The potential of video imagery from worldwide cabled observatory networks to provide information supporting Fish-stock and biodiversity assessment;Aguzzi;ICES J Mar Sci,2020

5. Burrow emergence rhythms of Nephrops norvegicus by UWTV and surveying biases;Aguzzi;Sci Rep,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3