Polar ionospheric currents and high temporal resolution geomagnetic field models

Author:

Kloss Clemens1ORCID,Finlay Christopher C1ORCID,Laundal Karl M2ORCID,Olsen Nils1ORCID

Affiliation:

1. DTU Space, Technical University of Denmark , Centrifugevej 356, 2800 Kongens Lyngby , Denmark

2. Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen , 5007 Bergen , Norway

Abstract

SUMMARY Estimating high resolution models of the Earth’s core magnetic field and its time variation in the polar regions requires that one can adequately account for magnetic signals produced by polar ionospheric currents, which vary on a wide range of time and length scales. Limitations of existing ionospheric field models in the challenging polar regions can adversely affect core field models, which in turn has important implications for studies of the core flow dynamics in those regions. Here we implement a new approach to co-estimate a climatological model of the ionospheric field together with a model of the internal and magnetospheric fields within the CHAOS geomagnetic field modelling framework. The parametrization of the ionospheric field exploits non-orthogonal magnetic coordinates to efficiently account for the geometry of the Earth’s magnetic field and scales linearly with external driving parameters related to the solar wind and the interplanetary magnetic field. Using this approach we derive a new geomagnetic field model from measurements of the magnetic field collected by low Earth orbit satellites, which in addition to the internal field provides estimates of the typical current system in the polar ionosphere and successfully accounts for previously unmodelled ionospheric signals in field model residuals. To resolve the ambiguity between the internal and ionospheric fields when using satellite data alone, we impose regularization. We find that the time derivative of the estimated internal field is less contaminated by the polar currents, which is mostly visible in the zonal and near-zonal terms at high spherical harmonic degrees. Distinctive patches of strong secular variation at the core–mantle boundary, which have important implications for core dynamics, persist. Relaxing the temporal regularization reveals annual oscillations, which could indicate remaining ionospheric field or related induced signals in the internal field model. Using principal component analysis we find that the annual oscillations mostly affect the zonal low-degree spherical harmonics of the internal field.

Funder

European Research Council

European Union

Trond Mohn Foundation

ESA

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3