The Meioflume: A New System for Observing the Interstitial Behavior of Meiofauna

Author:

Ballentine W M12ORCID,Dorgan K M12

Affiliation:

1. School of Marine and Environmental Sciences, University of South Alabama , Mobile, AL 36688 , USA

2. Dauphin Island Sea Lab , Dauphin Island, AL 36528 , USA

Abstract

Synopsis Meiofauna (benthic invertebrates < 1 mm in size) facilitate sediment biogeochemical cycling, alter sediment microbial community structure, and serve as an important trophic link between benthic micro- and macrofauna, yet the behaviors that mechanistically link individuals to their ecological effects are largely unknown. Meiofauna are small and sediments are opaque, making observing the in situ activities of these animals challenging. We developed the Meioflume, a small, acrylic flow tunnel filled with grains of cryolite, a transparent sand analog, to simulate the in situ conditions experienced by meiofauna in an observable lab environment. The Meioflume has a working area (28.57 mm × 10.16 mm × 1 mm) that is small enough to quickly locate fauna and clearly observe behavior but large enough that animals are not tightly confined. When connected to a syringe press, the Meioflume can produce low velocity flows consistently and evenly across the width of its working area while retaining the contents. To demonstrate its functionality in observing the behavior of meiofauna, we placed individual meiofaunal animals (a protodrilid annelid, a harpacticoid copepod, and a platyhelminth flatworm) in Meioflumes and filmed their behavioral response to a sudden initiation of porewater flow. All animals were clearly visible within the flume and could be observed responding to the onset of flow. The design and construction of the Meioflume make it an accessible, affordable tool for researchers. This experimental system could be modified to address many questions in meiofaunal ecology, such as studying behavior in response to chemical cues, allowing us to observe meiofaunal behaviors to better understand their ecological effects.

Funder

Department of the Treasury

NSF

ONR

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3