Airborne SARS-CoV-2 Is Rapidly Inactivated by Simulated Sunlight

Author:

Schuit Michael1,Ratnesar-Shumate Shanna1,Yolitz Jason1,Williams Gregory1,Weaver Wade1,Green Brian1,Miller David1,Krause Melissa1,Beck Katie1,Wood Stewart1,Holland Brian1,Bohannon Jordan1,Freeburger Denise1,Hooper Idris1,Biryukov Jennifer1,Altamura Louis A1,Wahl Victoria1,Hevey Michael1,Dabisch Paul1ORCID

Affiliation:

1. National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute for the US Department of Homeland Security Science and Technology Directorate, Frederick, Maryland, USA

Abstract

Abstract Aerosols represent a potential transmission route of COVID-19. This study examined effect of simulated sunlight, relative humidity, and suspension matrix on stability of SARS-CoV-2 in aerosols. Simulated sunlight and matrix significantly affected decay rate of the virus. Relative humidity alone did not affect the decay rate; however, minor interactions between relative humidity and other factors were observed. Mean decay rates (± SD) in simulated saliva, under simulated sunlight levels representative of late winter/early fall and summer were 0.121 ± 0.017 min−1 (90% loss, 19 minutes) and 0.306 ± 0.097 min−1 (90% loss, 8 minutes), respectively. Mean decay rate without simulated sunlight across all relative humidity levels was 0.008 ± 0.011 min−1 (90% loss, 286 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.

Funder

Science and Technology Directorate

Battelle National Biodefense Institute

National Biodefense Analysis and Countermeasures Center

Federally Funded Research and Development Center

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3