Modeling Fertilization Outcome in a Changing World

Author:

Chan Kit Yu Karen1ORCID,KO Wing Ho2

Affiliation:

1. Biology Department, Swarthmore College , Swarthmore, PA 19081 , USA

2. Physics and Astronomy Department, Swarthmore College , Swarthmore, PA 19081 , USA

Abstract

Synopsis Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.

Funder

NSF

Publisher

Oxford University Press (OUP)

Reference79 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Organismal Responses to Changing Environments;Integrative And Comparative Biology;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3