Potential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separation

Author:

Asamitsu Sefan1ORCID,Shioda Norifumi12ORCID

Affiliation:

1. Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan

2. Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973, Japan

Abstract

Abstract Cellular liquid–liquid phase separation is a physiologically inevitable phenomenon in molecularly crowded environments inside cells and serves to compartmentalize biomolecules to facilitate several functions, forming cytoplasmic and nuclear RNA granules. Abnormalities in the phase separation process in RNA granules are implicated in the onset of several neurodegenerative diseases; the initial liquid-like phase-separated droplets containing pathogenic proteins are prone to aberrantly mature into solid-like droplets. RNAs are involved in the maturation of physiological and pathological RNA granules and are essential for governing the fate of phase-transition processes. Notably, RNA G-quadruplex (G4RNA), which is the secondary structure of nucleic acids that are formed in guanine-rich sequences, appears to be an advantageous scaffold for RNA-derived phase separation because of its multivalent interactions with RNAs and RNA-binding proteins. Here, we summarize the properties of RNA granules in physiological and pathological phase separation and discuss the potential roles of G4RNA in granules.

Funder

AMED

JSPS KAKENHI

Astellas Foundation for Research on Metabolic Disorders

Daiichi-Sankyo Foundation of Life Science

Kanae Foundation for the Promotion of Medical Science

Mitsubishi Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3