The importance of graph databases and graph learning for clinical applications

Author:

Walke Daniel12ORCID,Micheel Daniel2,Schallert Kay3,Muth Thilo4ORCID,Broneske David5,Saake Gunter2,Heyer Robert36

Affiliation:

1. Bioprocess Engineering, Otto von Guericke University , Universitätsplatz 2, Magdeburg 39106, Germany

2. Database and Software Engineering Group, Otto von Guericke University , Universitätsplatz 2, Magdeburg 39106, Germany

3. Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. , Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany

4. Section eScience (S.3), Federal Institute for Materials Research and Testing (BAM) , Unter den Eichen 87, Berlin 12205, Germany

5. Infrastructure and Methods, German Center for Higher Education Research and Science Studies (DZHW) , Lange Laube 12, Hannover 30159, Germany

6. Faculty of Technology, Bielefeld University , Universitätsstraße 25, Bielefeld 33615, Germany

Abstract

Abstract The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. Graphical abstract  

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Information Systems

Reference204 articles.

1. Big data analytics in healthcare;Belle;Biomed. Res. Int.,2015

2. A Survey on NoSQL Stores;Davoudian;ACM Comput. Surv.,2019

3. Graph databases for large-scale healthcare systems: A framework for efficient data management and data services;Park,2014

4. Survey of graph database models;Angles;ACM Comput. Surv.,2008

5. Fundamental theory for typed attributed graph transformation;Ehrig,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3