The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in Artemisia annua

Author:

Xiang Lien1,Jian Dongqin1,Zhang Fangyuan1,Yang Chunxian1,Bai Ge2,Lan Xiaozhong3,Chen Min4,Tang Kexuan5,Liao Zhihua1

Affiliation:

1. Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Engineering Research Centre for Sweet Potato, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China

2. Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China

3. TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, China

4. College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, China

5. Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China

Abstract

Abstract Basic helix-loop-helix (bHLH) proteins are the second largest family of transcription factors (TFs) involved in developmental and physiological processes in plants. In this study, 205 putative bHLH TF genes were identified in the genome of Artemisia annua and expression of 122 of these was determined from transcriptomes used to construct the genetic map of A. annua. Analysis of gene expression association allowed division of the 122 bHLH TFs into five groups. Group V, containing 15 members, was tightly associated with artemisinin biosynthesis genes. Phylogenetic analysis indicated that two bHLH TFs, AabHLH106 and AabHLH112, were clustered with Arabidopsis ICE proteins. AabHLH112 was induced by low temperature, while AabHLH106 was not. We therefore chose AabHLH112 for further examination. AabHLH112 was highly expressed in glandular secretory trichomes, flower buds, and leaves. Dual-luciferase assays demonstrated that AabHLH112 enhanced the promoter activity of artemisinin biosynthesis genes and AaERF1, an AP2/ERF TF that directly and positively regulates artemisinin biosynthesis genes. Yeast one-hybrid assays indicated that AabHLH112 could bind to the AaERF1 promoter, but not to the promoters of artemisinin biosynthesis genes. Overexpression of AabHLH112 significantly up-regulated the expression levels of AaERF1 and artemisinin biosynthesis genes and consequently promoted artemisinin production.

Funder

NSFC

Foundation of YNTC

Shanghai Key Discipline Cultivation and Construction Project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3