The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice

Author:

Hao Yuanyuan1,Wang Yunlong1,Wu Mingming1,Zhu Xiaopin1,Teng Xuan1,Sun Yinglun1,Zhu Jianping1,Zhang Yuanyan1,Jing Ruonan1,Lei Jie1,Li Jingfang1,Bao Xiuhao1,Wang Chunming1,Wang Yihua1,Wan Jianmin12ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China

2. National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China

Abstract

Abstract Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. Recent studies revealed the functions of PPR proteins in organellar RNA metabolism and plant development, but the functions of most PPR proteins, especially PPRs localized in the nucleus, remain largely unknown. Here, we report the isolation and characterization of a rice mutant named floury and growth retardation1 (fgr1). fgr1 showed floury endosperm with loosely arranged starch grains, decreased starch and amylose contents, and retarded seedling growth. Map-based cloning showed that the mutant phenotype was caused by a single nucleotide substitution in the coding region of Os08g0290000. This gene encodes a nuclear-localized PPR protein, which we named OsNPPR1, that affected mitochondrial function. In vitro SELEX and RNA-EMSAs showed that OsNPPR1 was an RNA protein that bound to the CUCAC motif. Moreover, a number of retained intron (RI) events were detected in fgr1. Thus, OsNPPR1 was involved in regulation of mitochondrial development and/or functions that are important for endosperm development. Our results provide novel insights into coordinated interaction between nuclear-localized PPR proteins and mitochondrial function.

Funder

Ministry of Agriculture of China

National Key Research and Development

Jiangsu Science and Technology

Central Universities

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference88 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3