Affiliation:
1. J-PARC Center, JAEA&KEK, 2-4 Shirakata, Tokaimura, Nakagun, Ibaraki 319-1195, Japan
Abstract
Abstract
When the skin depth is greater than the chamber thickness for relativistic beams, the two-dimensional longitudinal resistive-wall impedance of a cylindrical chamber with a finite thickness decreases proportionally to the frequency. The phenomenon is commonly interpreted as electromagnetic fields leaking out of the chamber over a frequency range. However, the relationship between the wall current on the chamber and the leakage fields from the chamber is unclear because the naive resistive-wall impedance formula does not dynamically express how the wall current converts to the leakage fields when the skin depth exceeds the chamber thickness. A prestigious textbook[1] re-expressed the resistive-wall impedance via a parallel circuit model with the resistive-wall and inductive terms to provide a dynamic picture of the phenomenon. However, there are some flaws in the formula. This study highlights them from a fundamental standpoint, and provides a more appropriate and rigorous picture of the longitudinal resistive-wall impedance with finite thickness. To demonstrate their physical meaning, we re-express the longitudinal impedance for non-relativistic beams, as well as the transverse resistive-wall impedance including space charge impedance based on a parallel circuit model.
Publisher
Oxford University Press (OUP)
Subject
General Physics and Astronomy