Conditional growth defect of Bordetella pertussis and Bordetella bronchiseptica ferric uptake regulator (fur) mutants

Author:

de Jonge Eline F1ORCID,Tommassen Jan1

Affiliation:

1. Section Molecular Microbiology, Department of Biology, Faculty of Science and Institute of Biomembranes, Utrecht University , 3584 CH Utrecht, the Netherlands

Abstract

Abstract Outer-membrane vesicles (OMVs) are promising tools in the development of novel vaccines against the respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica. Unfortunately, vesiculation by bordetellae is too low for cost-effective vaccine production. In other bacteria, iron limitation or inactivation of the fur gene has been shown to increase OMV production, presumably by downregulation of the mla genes, which encode machinery for maintenance of lipid asymmetry in the outer membrane. Here, we followed a similar approach in bordetellae. Whereas a fur mutant was readily obtained in B. bronchiseptica, a B. pertussis fur mutant could only be obtained in iron-deplete conditions, indicating that a fur mutation is conditionally lethal in this bacterium. The fur mutants displayed a growth defect in iron-replete media, presumably because constitutive expression of iron-uptake systems resulted in iron intoxication. Accordingly, expression of the Escherichia coli ferritin FtnA to sequester intracellularly accumulated iron rescued the growth of the mutants in these media. The fur mutations led to the constitutive expression of novel vaccine candidates, such as the TonB-dependent receptors FauA for the siderophore alcaligin and BhuR for heme. However, neither inactivation of fur nor growth under iron limitation improved vesiculation, presumably because the expression of the mla genes appeared unaffected.

Funder

Institute of Chemical and Engineering Sciences

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3